首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179326篇
  免费   12968篇
  国内免费   8339篇
  2023年   2453篇
  2022年   2368篇
  2021年   5028篇
  2020年   5319篇
  2019年   6953篇
  2018年   6105篇
  2017年   4742篇
  2016年   4907篇
  2015年   6057篇
  2014年   9885篇
  2013年   13247篇
  2012年   7691篇
  2011年   10065篇
  2010年   8359篇
  2009年   9025篇
  2008年   9395篇
  2007年   9565篇
  2006年   8689篇
  2005年   8070篇
  2004年   7393篇
  2003年   6267篇
  2002年   5548篇
  2001年   3862篇
  2000年   3173篇
  1999年   3327篇
  1998年   3188篇
  1997年   2705篇
  1996年   2133篇
  1995年   2506篇
  1994年   2351篇
  1993年   2013篇
  1992年   1876篇
  1991年   1499篇
  1990年   1269篇
  1989年   1089篇
  1988年   1073篇
  1987年   942篇
  1986年   824篇
  1985年   1106篇
  1984年   1491篇
  1983年   1065篇
  1982年   1158篇
  1981年   881篇
  1980年   800篇
  1979年   654篇
  1978年   511篇
  1977年   433篇
  1976年   396篇
  1975年   305篇
  1973年   292篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Desulfurization of model and diesel oils by resting cells of Gordona sp.   总被引:2,自引:0,他引:2  
The desulfurization activity of the resting cells of Gordona sp. CYKS1 was strongly depended on harvest time and the highest value when the cells had been harvested in the early growth phase (0.12 mg sulfur g–1 cell–1 h–1). For the model oil, hexadecane containing dibenzothiophene, the specific desulfurization rate decreased as the reaction proceeded. Both the specific and the volumetric desulfurization rates were not significantly affected by the aqueous-to-oil phase ratio. The diesel oils, light gas oil and a middle distillate unit feed were desulfurized at higher rates (ca. 0.34 mg sulfur g–1 cell–1 h–1) than the model oil (0.12 mg sulfur g–1 cell–1 h–1).  相似文献   
2.
《Developmental cell》2021,56(21):2952-2965.e9
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
3.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
4.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
5.
6.
7.
In a recent publication the isolation and some characteristics of an anti-histone 3 monoclonal antibody, 1GB3 were described (Muller et al. FEBS Lett. 182: 459–464, 1985). We now report that the epitope recognized is phylogenetically conserved and located in the N-terminal part of H3, most likely between residues 40 and 50. Using the ELISA technique we found this region to be accessible in chromatin to the monoclonal antibody. The effect of non-ionic detergents on the adsorbtion of chromatin on microtiter plates was studied in this context.Immunological analysis of the reaction of the monoclonal antibody with chromatin by immunoinhibition and immunosedimentation shows that the H3 epitope is accessible in both folded and unfolded chromatin fibre as well as in high- and low-molecular weight oligonucleosomes.Abbreviations BSA Bovine srum albumin - mab Monoclonal antibody - PBS Phosphate buffered saline - PMSF Phenylmethyl sulfonyl fluoride  相似文献   
8.
The vitamin D binding protein (Gc) and posttransferrin-2 (Ptf-2) phenotypes have been determined in a number of Belgian cattle breeds. A very slow migrating variant of the Gc protein — Gc C — has been found in White and Red East Flemish breed. This variant was absent from the other breeds studied. This slow variant was identified as a vitamin D binding protein by autoradiography. The Gc C protein was shown to be controlled by a codominant autosomal allele Gc C at the Gclocus. The Gc C protein is probably identical with a fraction previously described in buffalo and an Italian cattle breed. The allele frequencies for the Gc and Pft-2 systems are reported for several Belgian breeds of cattle.  相似文献   
9.
The cysteine-rich region (CRR) of the β2 integrin subunit was replaced by that of β1 to give the chimera β2NV1. β2NV1 can combine with αL to form a variant leukocyte-function-associated antigen (LFA)-1 on COS cell surface, suggesting that the specificity of the β2 interaction with αL does not lie in the CRR. Unlike those expressing wild-type LFA-1, COS cells expressing αLβ2NV1 are constitutively active in intercellular adhesion molecule (ICAM)-1 adhesion. These results suggest that activation of LFA-1 involves the release of an intramolecular constraint, which is maintained, in part, by the authentic β2 CRR.  相似文献   
10.
The ability to metabolically label proteins with 35S-methionine is critical for the analysis of protein synthesis and turnover. Despite the importance of this approach, however, efficient labeling of proteins in vivo is often limited by a low number of available methionine residues, or by deleterious side-effects associated with protein overexpression. To overcome these limitations, we have created a methionine-rich variant of the widely used HA tag, called HAM, for use with ectopically expressed proteins. Here we describe the development of a series of vectors, and corresponding antisera, for the expression and detection of HAM-tagged proteins in mammalian cells. We show that the HAM tag dramatically improves the sensitivity of 35S-methionine labeling, and permits the analysis of Myc oncoprotein turnover even when HAM-tagged Myc is expressed at levels comparable to that of the endogenous protein. Because of the improved sensitivity provided by the HAM tag, the vectors and antisera described here should be useful for the analysis of protein synthesis and destruction at physiological levels of protein expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号